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A meth&’.‘“is jpsented for thi “~lctiation ;f ‘b+iing ,itiesses . : . .
due to torsion.ih”a ‘~~ered’bok’“beam..A 8p~cial ,*ger W* ,asmmed .. “:. ~,
in which all Tilemgb?,.if extbnded”,would .z@ek“at.a.~int. we general::. .~ ,
procedure:~f $rkly&ia gtvbn:,ik”similar ‘tp,#&, pr~cshre for a non- c

-1
f

ta~ered beak pies6n~@. ~j Paul’I@hn in hi%:ja>eti.,~~,.~btkod..of
Calculating 3@13.ng sti+esies:D&e”t~ Torsi&j “*’NA$A:F$U?,,Dec. UJ42. .

..

Recurrene6.‘fmxml~ “.detblkqy%ifor use-in this”c~cul~tion are . “.. ./
included.. A ccmqprison was made of flange”&d sheet stresses in” ,
boxes with varying taperj.includi~ a,gon%=$~?red.~ox~ ,

“...:...:.:... . .-. ... ., -...— ______.. .. -......“.“-::; . ,,.-’

The resti%’ ckk@ie8 %y ‘%is kthod” iwire’&.pj@e5 wi~ exper~- . .. ~~
mental data”dlkainsd f@m “teste”‘pkrfozmiqd..ona,ti~e*9d lox beam. 1
The boa teatiwhs tested ukder.@“o i.@@W@n*. wiI-~++on8 of loading~
first, d. cohckm%ti%d %orque at”th& tip M l.abti$,’:~concentrated ~

I

torque at the quarter point of the s~an. The experimen~l results
obtained.from these tests showed good a~eement with the calculated
remil.te. Ca&cul.ationsfor the test sp~.cimepfor the two loading
conditiom. are also shown.

. ,. 1
{ ~

,.

INTRODti~6ti ‘-”.- .::‘.-”‘:’””“’ ““‘“‘“ “ ‘-’‘---‘,
........ :.+.... . ....:, ,... ... .1

The basic load-cam%ing struct~e .QfWW ..@i%Gra?t,~i%s is.a . , :
box of approximately rectangular“:&&s’ eec%ion “ccin”sikfdiigof the
front and rear smrs and the tm ad bottom ekine of the *g c This
box is stressed by both bending-and torsional loads. Only tie

I

torsional loads are discussed in tie present paper. ;

The determination of the stress distribution in a box under
t

torsion is a relatively simp3e problem provided that the cross
section of the box is no% constrained in any manner against warping.

I

I
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In this case the we13.-knownBredt formula for thin-walled torsion
tubes is applicable. If some restraint is offered to warping,
however, a sot of seoondary stresses is introduced in the box,
Because the resultants of these secondary stresses are actually
bending moments in the planes of the walls and are accompanied by
the shear forces necesssry to cause spanwise variation of the
bending moments, these stresses are usually referred to as bending
stresses due to torsion.

A method for the calculation of these bending stresses is
‘presentedin reference 1. In order to simplify thecalcu~tion,
Kuhn utilizes an assumption that the cross-sectional dimensions
and the torques are constant within each bay of the box and gives
We solution only for boxes in which the sides are parallel.
Actual wings, however, ere usually tapered both in depth and in
width. The present work is intended to furnish a theoretical
solution of the effects of taper on bending stresses due to torsion
and also to present experimental verification of the method of
calculation. ..

The body of,this Raperis’ ‘dividedfnt&two parts,. The first
part deals entirely with the4h60reticQ development of th8 formulas
for bendi~ stre&s6s,due.to:.@%M.on in a tapered,box,beam. The
general ”procedure,ofsna~sispresented”ls “ai@lar. to the procedures
presented by Kuhn in,re?erence 1 fid by:Ebner in reference 2. In
order to sim~lify,tie.~~emtical saalytii,s.a”.’&p8ciaJ.taperis
assumed; “t@+’i@).the si,dgxs:’e$‘thab~x are ~“ssumedto taper linearly
in such a way as to meet at a point.

The second part of the paper deals with the experimental
verification of the theoretical formulkm. A description of the test
specimen and the test setup is given. Comparisons are then made of
tho calculated and experimental results for two independent conditions
of loading* Complete n~r~cal soltitionsfo~ “bothloading conditions
are given in’the appendix. ..,,.
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effective fltige areaj...squar~cheshes ““’ : . .,~.. .>.:”,. ..

area of flang6 angle, square inches
..

area of cover stringer} square inches
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E Young’s modulus of elasticity.,psi .$ .

F flmge load at ~ point, pOUlldS

G shear modulus, psi

~1> %, KS taper constants

L length of flange in individual lay, inches

R tayer ratio
(

% ;r .%
bn.l Cn-1)

T external torque, inch-pounds

T volume of material, cu%ic inches I

x redundant flenge forcej pou@3 . .

s. distance %etween bulkh~ads, inches

b width of cover, inches

c depth of spar, inches

f, 8, P warping constants -

3

.,
1

1

1

:

:

i
1

I
I

I

I

I

designation

designation
,.

shear flowj

designation

‘ distance in

I

for general temn in series I

for typical lay

pounds per inch

of root bay
i

each bay measured along axis in tlSD@j il?ohes
I

i

sheet thickness, inches

warping deformation inches

distance in each bay from outboard bulldaeadmeasured i

along axis, inches
I

angle between flange and center line of cover, radians

1

1

1
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UC angle betveen

o normal flange

T shear stress,

T
av

average value

Subscripts:

‘i
flange and center line of spex, ~ai~8 I

stress,‘psi ~ i1
I

of sheer stress, psi

,.

b refers to covers

o refers to spars

i designate inboard

.

end of bay

o designates outboard end of bay

Superscripts:

I
,

I
i
I
i
I

\
i
i
I

‘1
1

T designates stresses due to torque
r, I

,I1
u designates stresses due to dummy unit loads

.;

x designates stresses due to X-forces iI

The subscripts of the redundant
dimensions b end c designate the
whereas the subscripts for T, w, p,
under consideration

fbnge force X ma of i

stations at which they exist,
3, and f designate the bay ~

The bulkheads or staticms are denotedhy O, 1, 2,... n-l, n, .

Ml,... r, starting from the tip or out%oard end and proceeding to
the root or inboard end. (See fig. 1.) The bays are also nuzibered . .
from the tip, the tip bay being designated as number one (Bee
fig. 1)* A bay therefore carries the number of its inboard bulkhead
or station.

8

. . . .
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IfEVELORYIPIIWOF TBEO~TICAL FORMULAS

“ El actual wing design neither the sp.nri’sevaxiatibn of’‘&e
torque nor the cross-sectional dimensions cszibe represented.%y-
simple mathematical expressions. In order to simplify the

...,

5
I
I

I

I
mat~bmatical calculations the box-is divided at we bizlkheadsinto
a-number of hays and We torque is assumed cons-t within each
inQ+yidual bay.

I

.. -.,.
A box beam under %ortiianis an indeterminate struc%ure. B I

odder t~ mike the structure statically determinate, the box is cut
at each bulkhead end redundant flange forces X are applied at
all flaiges.. These X-forces az% axial forces applied at each

i
flange, as shown in figure 2. Ihder the acticn of the torque T
and the flange forces X the %OX is deformed as shmnl by tho
dashed lines in figure 2. The amount of detonation is calculatd
by the use of the princiyle of vfrttil work, sometimes known as
the duumy-unit-loed method. The X-forces are then.found by the

I

< application of the principle of consistent deformation of edJacent t
bays.

4

b

* Sim “.convention.- External tor&es T are positive when acting
clockwise as viewed fron the tip. Shear stresses T arb.~sitive
when acting in.the di.rec%ianof shear s.tresse.scaused by positive
toyque. The X:@ices.ar@ po~ittvq when acti+@ irithe directions
shown in the~ketch” iti”figg.ye“2. ~ormalptresses “’a are positive
when caused By”positive X-forces. The w5mpZi3gdefbrmat~oti”ti--is

.7-.-—. ......

positive @ we direction aq shcwnby the:dashed lines in figure 2.., . ...—
.. ..,. .. . . .. .”...:.-.-., , ..

@neral &umntt’6ns.y:The cross section d~ the %6x is &&tied to....
‘berectsn@.er.knd doubly.syrmmtrical;:“The shap5 of the cro&s section
is maintained by “t+.eMlkheads, which are l%simed”ko be rigid in.
their own planes. h place of theaetual wtructie,’tbe equivalent
struct~e.s~owr+ in figure 2 is used, @ which all the area capable
of Kzy!yZng norpal~ptress’esis concentrated i~’the”flanges.”“-”The
WEWS ~f the equivalent’s~uciv~e are.ass@e&%q car@. only shear
stiesses .@adthe”flanges;.all the.norinal’strqss”es.“,In’crderim

.. -. allow for the fact mat the waQs ‘can”acttilly’carry&5M&%2 stresses,
e.ach,fl~ge,”area is increased by ~one-sixthof”the emea of..botha
cover and a spsr web. ‘Ifth& covbrS incl~e &r@ersj-d effective
5tringer area is aadea to each flange. This effective stringer e+wa
is that are~ which, when concentrated at the flemge, gives the same
section modulus a%out the neuia?alaxis of the cover as the actual
stringers. In the case of equally spacsd stringers the effective

}
.!

1

. .

I
1

I

I

str~er area is
taper of the box
effective flange

simply one-sixth of the total str@er area. The
is such that the flanges meet at a point. The

I
I

area is assumed constant witiin each bay.



NACA TN No. X297

Stresses in “hnIndividual Bay

The formulas given herein are”derivc%ifor a ~ical bay n,
boundedby thelmlkheads n-1 and n, (fig. 2), The bay is acted I

on by three independent eets of loads:, a torque Tn on both ends

of the bay, a group of Xn-forces on the,inloard end, and a group

of Xn.l-forces on the outboard end. Formulas are derived for the

stresses due to each of these independent loads. The final stress
distribution may le obtained by euyerposing the individual stresses.

Stresses caused by torque,- The shear stresses cs,used by the
torque acting on a bay are given by tho well-knoti fozz?mlafor
shells in torsion (Bredt’s formula)

Tn 1.

‘b = 2bc~ ..
‘> ““ .
I

. (1] , ,

_ T’n”
T

c 2bctc ‘ J
r,

where b is the width of the cover and c the depth of the spar
at some distsnce x’from the,outboard end.(fig. 3). In the case of
pure torque no normal stresses are set up in the flange.

S&eases caused by the X-forces.- When a set of X-forces is
applied to the end of the bay, both axial stresses in the flanges
and shear stresses in the walls are set up within the bay. Unlike
the shear stresses for the nontapered box, the shear stresses in the
tapered box are not constant throughout the bay. : .

In order to study the distribution of the shear stresses
within the individual walls, asection of a wall is isolated as
shown in figure 3(a). The free body shown in this figure is a part

of a spar web bounded by two planes cutting the spar Just inside
the flanges and by,two parallel planes, one just inside the n-1 bulk-
head and enoth6r parallel to it and at a distance x from it. The

,,
. .

h

I

.

1

I

I

m

,>

. !:

I
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““loadingon the’body is also shown in the figme.
—

By sunmation of - b
moment iabout the ,pointof “intersectionof the flanges, en expression
is ob%ined for the ~hear flow qc in the spar in terms of the out-’
hoard sheer flow q%-l

1

(2a)

I
I

..

ad, similarly, in the cover ,

2.

H

bn-l, qb..!l~=-
b n-1

(2b)

-.,

.’ . .

.“

4 :. .
i ,.”

where tlienotation is

., .
rt

the same as -t show

of the shear flow ~

of a spar web isola~~

in tigure s(a).
-1

is obtained from an IThe distribution

infinitesimal section as shcnm in fQure a(b).
The free body shown in this figure is,a sectiionot the spar web
bounded by two parallel planes an infinitesimal diwtanee @ apart
and by two planes cutti~ the spar just inside the flange. From

.,
I

a summation of moments, the fundamental shear-flow,relation in the
spar for a tapered box beam is obtafne’d,

1,
qc = qc’

x
(Sa)

I

1

and, similarly, in the cover
. .

‘.

,

;
(3b)

.1

shows that at every point along the box tho shear flow
flemge %s equal to the shear flow in tie walls at

This equation
acting on the
that ~oint.

.. .’

\ s’- ‘ In order
the cover end

to ~btain a relationship lwbween the shear forces in
in the spars, a free body of a cross section of the

6,

L -.

.

,
I
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.,

box iu considered. Since the taper of the box is such that the
center lines of the fl~es meet at a point, the flange loads
contribute no torque and,the condition ZT = O gives the equation,

qb~c + Qc = O

or

q~ = -(it (4)

Two expreseicms for the flan~e loads are derives, one for the
Xn-forces and another for the Xn-l-forces. The free body of the

flange in figure 3(c) shows the loading of the flange Unaer Xn-forcos

only. A summation of forces along the flahge shown in figure 3(c)
gives an expression for the flange load F at any point along the
bay:

11X fix

Ias ‘ ds
Fti“— q I“c ‘+-l! /’ ‘bx

ax=o

LJO x do
(5)

where ~~ is a constant
i ax

combination of equations

r
:
t
1

.,

,1

m

●

1

L

tiepend.ingon the taper of the box. The
.

(2] to (~) gives

,,
.&

,

I If the integration is perfomned with c given as a function1
of x by the equation

I
1

C=w[’.-%ad%ad~ b

n
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L

equation (6) becomes

F= ‘%-l x
2L ~cn-l --- a (8)

I

I

.

where, L is.the length of the flenge and a is tie distamce between
ImM&eads. , I -,

t

With’ the forces Xn-l applied at the outbar”d end of the bay,
1

fMm.ge loads become
1.

the

(9) I

In order to o%tain ~ In terraEIof the X-forcos, the value
n-1

F for both Xn-l-
.!

and Xn-forces is calculated for x = a.
.,

of

For the case of the ~-forces
t.

,. .,
Y

x= ‘%-1 ~ “=2(J —
‘n-l ‘%

I

I

or 1

-,

Xn
!lC = ‘~b =R—
n-l’ n -1 2L ‘

,

—.
IFor the case.of the Xn l-forces--

,“

0 Cn-l ~=,xn-l + 2q -—
Cn-1 %

-t
--

or

x
~c = ‘qb = -R ~
n-1 n-1 2L

.

(11)
.

I
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bn
where R is the taper ratio =

%-—. = —0
bn.l

.
c~.1

By substitutin~ equation (lG) in equations (2), (4), and (8] and
equation (11) in equations (2), (4), and (9), a summary of the stresses
fn the bay in terms of the X-forces at the end can be made. For
the Xn-forces

x 7
cncn~ ~

q= ‘“—-
X ~2 2L I

!& .?!3%x=-# ,.
}

F Cn X Xn
a =—=.——.—

A caA J

and for the Xn-l-forces

Cnon-l %-1
q= - — .——
Cx c2 2L 1

I)nbn,-l Xn.l
qb =— —
x b2 2L

where A is the effective area of the flange.

(12)

(13)



and
its

Defomnation of an Individual Bay “ ...

Frtnc3731eof calculation.- Under the action of the torque— ——
grouys of X-forces the cross section of the box warps out of
plane, as shown in figure 2. The magnitude of this warping is

calculated by the method of virtual work: The following three-steps
are necessary to obtain the _tude of the warping. First, the
stresses T and u due to the a plied loads are obtained and

second, the stresses t?# and a due to a system of dumgy loads
are calculated. These dummy loads are unit htaf3 applied at the
point where the deflections are desired and.also in &e direction
desired. The last step is to obtain the defamation by tie of the
equation

,where V is the volume of the stressed material.-
%ased on the yrticiple that the external work done
must equal the internal energy stored by virtue-of
tho unit force.

(14)

This equation is
by the unit force
the existence of

Examination of figure 2 shows that the warp- is doully
antisymmetrical end consequently the dummy loads employed in tie
solution ~e also doubly antisynmetrical. This group of tit loads
is stilar to the group of X-forces and therefore the formulas for
the X-forces can be,usedin the calculation of the stmesses caused
by dunmy loads.

~arping caused by torque.- The stresses caused by the torque
acting on the box are, from formula (l),

L3=o

Tn.”~ “.

b= 23c~

Tn
Tc = —-

2bctc

1/
J

(15)

I

\“
I

i

I

1

1
t

,,,

I

I

1

i

i
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.,In order to obtain the warping in the nth bay at bulkbead n, the
antiqmm.strlm.l group of unit loads is applied at the inl?oariie?+i.
of the bay. The stresses caused Ey -theseforces axe calculated
from formulas (12) by placing Xn = -1. The results are

,, ,,

\

. .

,(16)

? ,,
;U.. = “ %&A_L_
c“ ~2 2Ltc.,

J ““
...,,

.

.for v, and Uu TJ
TbJ ‘c and for a , Tb Y md TcThe results

given in equations (15) ati-(16) are now substituted,in equation ilk)
to give

1

. . ,.. .
$, ~wT=,2:. -:-(”%=JC’A-.‘ “f}&G”l ~..

n~
/o .G2bctc

,., ..

L“’%%?+%)!!!”? ~

,., ..
,. .J. ‘+ 2
:.,,. .,
. . .., ,,. ... ,. .. ,,

,.

,.
. .

.’

4

,

I

i
i

t. . . ,. ,. ,.
.. . .

which yields when integrated
..,. ,,,.,.. .,,.

.

,
,, ...

ab bn.J 1+-R— ——.. “%cti — ‘(17)

L .% L ~c ~

T Tn
‘ni = ~—-

n-lcn-l

I

.

,,

1.

,

I
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i

.
I

3iIorder to “obtainthe warping due to torsion at bulkhead n-l,
the groups of unit loads are applied at the outboard end of the bay.
Now the stresses due to the dummy loads,.aracalcxbtsd from
formula (13) with ~.l = 1. The results are

1

as fOllowe:

u“T. =.- %2Q 2.
c ~2 2Ltc

(18)

I

.,
.,.. .

I

1

.
The stresses due to the torque acting m

show in equation (15). An inspection.of tie
and (18)) caused by the unit loads gives

i

the %ay are those
stiesses (equations

Tw’ =W”
o %* = ‘“T

1

(19) I

I

Warping causea,b~ Xn:force$.A me wexping

of tie “bay”caused by the ~-forces ZS o%tained

at the inloard end

by the a~plication

of equation (14) in the foti .
I

x~
4wni =

% TbT#4 /%!! A ag”+ 2
s

.G b~q
JoE,,~

J

‘u ““ “.
+2 ‘aCTcTc

— Ctc .(IXC
-o~.,

.. .

,
[20)

I
Substitution of the values for the stresses due to the unit loads
(equation (16)) ma the stresses due to the ~-forces (equation (12))

. in equation (20), causes.the equation for wa2ping to becoms
.

I

%1. ‘ni = -pnxn (21) t

1

I
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where

*

t
i

i

i
i
i

1

,,
. . . . ... . .:, . . . .. $,: .,,. . .“

. . . .,, : . . .,.> -
. . . .,.. “: :.! ): .,” :-. ”

.’, .,, =,. . .,
,.

(
.....,-.,.,...:,..,,,.. .ab’bn:l~~~~?l,. ‘~~ ; R.....“ ;,

la-l,,’,~1, g’+.+L,= ~
‘Ltc “) (22)

,.,
,.

8
. .

,.. :,...,”. ,

and
#2 (;2.1

)(R -.1)3 ~ ‘2 loge R
,Kl= (23 )

,

The

the

CO.UStSrltK1 iS
individual bays.

de~endent entirely on the taper ratio for
...’ ‘. .“. i

1

the taper’“ratioapproaches unity, the
expression for Kl Q equation (23) becomes too sensitive for

1

:

.,

As the value of

practical.use. By expanding.t@e logarit~.lnt~..m.i.nfini% series
of’ (R -“2), ,“.’ ,.

.. ’., ,,” .,

‘1 =1+$(R ‘1) ‘;, (R ‘1)2+R -1)3 ,...

. .
... .,’. . .,

WI g+’(-1] (R “ l)m {24)
., (u +..,l)(m.~,2)(U i-~,

., J......... ..... ... .. ...........
.,... ., ,.,., .. .’

.
n

I

This expression can only he used for:..smallvalues Of ~R, bince the
C3erlesconverges only for values of R < !2, The rate of convergence
is very slow, however, after R reaches a value of approximately 1.5.
For values of R <1.7 orily:fqur.tbztiof ’theseries are needed to
evaluate K1 within 3.percent. A,graph of numerical values for Kl

from R = 1.00 to R = 3.00 can be seen in,fi~e 4.
,.. . ..

The warping at the outboard”end of.the bay caused by the
~-forces can be written in the form

,,, ., .-. xi. j,, ::. .: ., . . .

. w~ =-J&,:”’,’, ‘ , . . . .. . .,, . 0 :,, (25). . ... -.!..
. .

. . ,

J

,’
..”

1
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I

,

,

where the coefficient J=, is obtained.by the application of

equation (14). By substituting the values for unit stresses from
equation (18) and the v~ue for xn-s~osses from equatim (12) into
equation (14) and Integrating the result, Jn is found to be givenby

(26)

Iwhere . .

[

2R2 -2R-(1+R)R1O$3*R

%? =-6
(R - 1)3 .1

1

(27)
,

I

I

For small values of R, again the expanded ‘seriesfor K29

I●

1

m+l 6(IE-L)
+ (-1) (R - # (28)

(m+l)(m+2)(m+~)

is more ~ractical. As for Kl, the rate of-convergence of the

series makes the expression pract~c~ only for the range from R = 1.00
toR = 1.50. The numerical values for ~ are plotted in figure 4=

.. .

.1 I

Warping caused “by Xn-l-forces.- The warpin~ at the inboard

end of the bay, caused hy”the Xn-l-forces, can he shown, by means
I

of l@xwellls law of reciprocal deflecti&j to %e equal to
,. ’.. . . . .

,., . /%1 “’”’”““ “’””” .,
=Jnxn-l :(29)

% , , -i

. . . [

where Jn is the expression given in e~-tion (26).
I

i
I

.’

1
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The war~ing at the out%oard end of the bay Is derived by
substituting the values of the stresses for unit loads from
equation (j.8).andthe,vtiluesof the stresses for the Xn-l-forces

from equation (13) into equatfon (14). Upon integrating the result,
the following expression is obtained:

I
.,

Xnq “
%0 = fnxn.l ‘

. .

where
.,

and

r(R2 ‘i)-~lO&~l

1.
. , -w.. . —

‘3=3
I

(R -

For small values of R, the expahded

‘3 “=
-#-(R-I)+~(R-

10

(30)

series form for K
,3’

~ (R-1)3...1)2 ---

+@)m— 6 .(R -l)m
.h ..

(m+2)(m+~)
(33)

should be tis”ed.‘As was the case for the exp&ssions for K1 and ~,

the rate of convergence of the series makes the expression for K
3

: practical only within the limits of R = 1.00 md R = 1.!30.

Comparison of tanered-box formulas with uniform Cross-seotiOQ
$Ormulas,-A comp~ison of the formulae derived forthe tapered
box beams with those formulas derived for the nonti~ered box
by Kuhn in reference 1 can easily be made by obtainin~ the formulas
for the special case of %ap~r where the taper ratio is unity.

1

1

.,

.

, .
P

I

.,

m
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following relations hold trueWith this assumption, the

a+ % C=L=a I

I.,.,
-,

,.
.,

Equation (17) now becomes

1

I

.( .)TT%

&bctb-f .‘n= —-—
,
I

,. ... .,. _...
,...

which is identical with equa%ion (21) ~f referenge 1. Equations,(22)
and (31) become -. . .

I

i

which is identical with equation (23).of reference 1. Equati~ (26)4 ~

becomes [

(J~ = -& +&*.”:. +.
c )~.’””’ . ..:

1

.!

.
. . . I

reference 1:

. .

which is identical tiw equatio~ (?7).o.f

This comparison shows that &ll.the t&ered-box formulas for the
s~ecial case of R = 1.0 or uniform cross seCtiOn are identical
with those formulas developed in reference l.’ “

privation of a recurrence formula.- The total warpi~ at the
ends of the bay n due to the combined effects of the three 8eP-te
forces T, ~, and Xn-l can now be obtained by a sption of all

the otiponent parts. The equation for the warping at the inboard end of
‘bay n is given by the sm” of equati~s (19), (21), ~d (29).

.

1

I

i(34) ‘

t



The equattcn for warping at the outboard end of bay n given ~y
./’

the summation of equations, {27), and (30) is

T
‘n. = Wn - SnXn + fnXn..l (35)

The oquatzionfor warping at the out%oard end of bay n + 1 is
obtained.merely by increasing all subscripts of equation (35) by . “
one and is

(36)

Aocording to the principle of conoi.stentdeformation, the
warping at the outboard end of one bay must be equal to.the &wpiq&
at the inboard end of the adjacent bay. A recurrence formula can
therefore be obtained by equatir~ the warping formuJ..asof two
ad~acent bays. By

and the expression

recwrenoe formula

equatin~ the ‘~xpressio~for Wn: in equation (34)

‘or ‘(n+l)o

Iecomes

.!.

in equation (36), the general

‘.

‘ +&l - ( “T-VT
(37)‘n+l + %,) % + ‘Il+lxn+l= %+1 n

By giving n successive values from’ n = 1 to n =r, a
se% of- ; equations is obtained, each of which contains wee of ,..
the redundant X-forces. These equations represent the continuity
conditions at stations 1 to r. The tip of the box is usually free
from any restraint, thereby making the farce X. at the tip”of the

box zero. Therefore, for a box divided into r bays, r redundant .’
forces and r equations exist. #

Boundary cacklit~m..-With the tip of the box free from my ‘
restraints end the tip force X. = 0, the first equatlcm of the . .

system is “.
,.. .

,

.

I
I

i

I
i
I
i
I
1
I

i1
1

,
11

.

;r

F
(38)

,
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When a .heam is at@ched to a rigid fo~~tion, the foundation maY
be considered a bay r + 1 ‘having izifinitesheti stiffness and

I
1

infinite e=iialstiffnes.s;therefove, ‘“
,,,

The last equation of

TT”=f
r+l r+l

.jwi.~ 1

i
i

the system now becomes ,

(39)

~omparison of stressesfor “boxeswith ya&yinK taper ratio and
~lawe area.- In ~d~to show”the effect of taper on the bending
stresses due to torsion, calculations were “madeof the flange qnd
“sheet stresses for b’oxeswith varying taper ratio and flange area.
‘-AU boxes were.120 inches long end were divided into six bays of
equal length. The yoot sections of the boxes were identical. The
dimensions for the boxes.at the root and ti~ can be seen in t&ble 1.

In figure 5(a), curves of the fLange stiesses me dxa~m for
the three boxes with constant flange areas and also for the
moderately end highly tagered boxes with a tapered flange area.“
In-figure 5(b), curves of the sheet stresses are drawn only for the
three hexes with the tapered flemge area. .,.

Figure 5(a) shows that the fhnge stresses for the case of the
moderately tayered box (curves C and D) are only slightly greater
than those of the nontayered box (curve E) . Examination of the root
flange stresses for all.cases shows-that the increase in these
stresses for en increase-in taper is very s~l~; me root fl~ge
stress for the highly tapered box is approximately 10 percent above
that of the’nonta.yeredbox. Since, ae in the nontapered box, the
flenge stresses for the box with moderate taper decrease ?ery rapW1.y,
the only appreciable.flange stresses occur in the vicinity of the root.
As the taper becomes greater, however, the flange stresses alcngfie
total spe.qincrease. Insyectlon of curveq A and B shows that -
the flsmge str’essesat a p@nt, 20 inches from the tip =e approxi-
mately one-third of the mextium flenge stresses “at the root.
Consequently, for the box beam with moderate taper the bending stresses
due to torsion i.mthe outboard end are negligible as compared with
the stresses ne’arthe root, whereas in the highly tapered box the
flange stresses do.}ecome,e.ppr@ciab18. A similar cmclusion for the
sheet st@sses caq%e T,eached,%y~e- $@pection of figure q(b).

.. .

i

1

1

,

1

I
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Comparison of curves A and B and curVes C and D in
figure ~(a) shows the effect of a variation of flange area along
the span on the flange stresees. The maximum effect apyears near
the tip of the box where the fla~e streus for the box with tapered-
flamge areas is approximately 20 percent higher than the flange
stress in the box with constant flange area.

Two sets of calcn.alat~onsfor the root stresses were made for
a moderately tapered box under a distributed torque loading. The
d.istiibutionof the torque was such that the increment of torque
in each bay was pro~rtional to the chord of the hay at the inboard
en~. The method presented herein is Used’for the first calculation
which was an exact solution of the root stresses. The second
calculation was made on the assumption that the box consisted only of
the root lay with the total torque acting on tie outboard end. The
result of these calculations showed that the rcot stresses calculated
‘bymeans of the exact method were approximately LO percent ~eater
than the root stresses calculated %y the approximate method. Similar
results were o%served for a calculation of the stresses in the highly
tagered box under a similer distri%ut~,onof torque. TWmn only the
approximate value of the stresses at the root is required, a satis-
factory answer can be obtained by assuming that the box consi.wtsonly
of tie root bay end that the total torque is concentrated at the
outboard end of that bay.

In both sets of calculations with the distributed torque, the
flange stresses near the tip of all the boxes were approximately of
the same order of magnitude as those of the moderately tapered box
with tip loading shown in figure 5(a].

EXPERIMENTAL 9EKIFICATIC)N

Test specimens.- In order to obtain.—
of the formulas derived herein, a large

OF FORMULAS

experimental verification
tapered box beam was

constructed and tested. The bo~ was &de sfimetrical about the midspan
and was supyorted there by a rigid frame as shown in figure 6.
Because of this setuy, complete re~traint against warping at the
root, which is the midspan of the box, was assured. Equal torques
were applied at the tipe end later at the quarter points of the span.

The material used for the %OX wss 24S-T aluminum alloy and the
geneval dimensions of the specimen are shown in figure 7. The
thicknesses of the covers and the spw webs and,the sizes of the
flanges, stiffeners, and stringers me also shown in figure 7.
General dimensions and.atcringerspacin~ of both the root and.

.

(
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.

tip sections are bhotm ir”fi~e 8, along with the &mensions for
,.

the equivalent sutmtitute”se”ctfons,.-
,-

The dtien?ione of the box
vary linearly from the tip to the’root,’-‘-whereasthe thicknesses
of the sheets and sizes,of the flanges and stringers are constant
for the whole box. “Although the flange ”arba’otme qimp~ified
s%ructtie’Vsrie& .line&l.yfrom tip “tipto.& robt, due”to the .
addition of one‘~ixth the area of the”cover anil8P” we~, an
average flemge area in each ~ay is used in the calculations,.,In
order to asstie thqt ~e”%’timea,ds“were-fi$.gidfdr q~.?~~ctical

purposes, the bull&eads were,made of-fozzned%.mhsteel plate. .
.8. . . . -.,

Test “set~~.- The.general test set&’ is”showr-”in f@ure 6:~ :..”
The &x beam was comecl=d to tbe.cen~r ~wer”.W m=~ of fo~ “.
steeJ.flexure plates, one”on-each side of,the box. In order~to-
reduce the end effects as much as possible, the box was connected

to the flexure plates at the root by closely spaced ~-inch bolts.
. .. ,,:’

This t~e’o.f connection permits the torque-reaction to.be distributed
as a uniform shear flow.arowd the ~erimeter of the box. Figure 6..
shows the loading arrangment.at the.$ips of the box. The ssme ‘
method of loading was used when Me tests-were run.with loads at .
~e..quarter-s~,,yotits. . :, ..’‘. ... ‘ . .. ‘:..-’

. ,. . . . . . . .... . .. .
.; Test wmcedure.- Strain surveys were qle.defor bo.tl-’loadings
with 2-inch. Tuckerman optical s.tm.ingages.” Shear.-strain measurem13nts
were taken around the perimeter of the box at Sectl’onsnear the -, -.

c.q~te:. l-h? Of each.bay, @ also at,~ections 14,2 ?.c~~ Q? e~:yer
Me “~she&’.%t&& measmements ~cros~ .side .ofb&ead8 ~’A “~:

any cross section consisted in measurements made .%etweenthe . .
stringbrs and between the.”flange“’and adjacent stringer on the covers
end three equally spaced measurements in the spar wel. The shear
stresses were obtained from strain readings at 45° and 135° from the
axis of the structureL””The no-l. strafis were me~s~ed alon$ each

the rOOti “’ .. .. . . .“ :-:

For each,teet run, strain-gage readings were taken at zero
torque and.a~ter each of four equal increments of,75,000 .tich-pounds
of torque. The load was the~ released end another zero reading w%
taken. If the two sets of zero readings did not agree within 100 psi,
a new test run was matie. The strain readings for each gage were then
plotted against torque end the best straight line was drawn.through
the points. If the line did nat”intersect-ae Qrigin, a P@mllel Ltie
was drawn.throvgh the Qri$tis If, however, the new L1.newas displaced

I
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,

I

i

from the original-llneby more’than a strain equivalent to 200 ,psi,
a new set of readings was taken. The values of stiain were then
obtained from this new parallel line.

Test results.- In converting the results obtained from the ;:,
sta%in surveys to stiessesi Young’s modulus was taken as 10,600 ks’i
and the shear modulus as 4,000 ksi.

.’

The observed sheti stress of a cover or a spar at any section ‘
Is the average of the shear.stresses obtained for the two opposite “
oovers or spars at that section. Figure 9 shows that the distribution
of the shear stressesacross the covers and spars is oonstant
throughout the ‘section,except for the part of the skin between
the flange and the adjacent stringer. These plots substantiate in -
yart the original assumption of uniform shear stresses over the
cross sectionc

The observed flange stress at any section i~ the average of
tie flenge stresses obtained for the four flanges at that section.
In figure 10 a plot of the stringer stressesat a oross secticm
in bays 5 and 6 is shorn. Strain readings were taken on each
stringer on the leg adjacent tQ the coverc The cross sectim in ~
bays 5 and 6 were chosen because the normal stresses were the largest
in those bays. Figure 10 shows that the chordwise distribution of
the stringer stresses in the cover is approximately linear; thereby’
tie use of.the theoretical equivalent-area coefficient of one-sixth
appears to be justified.,. 1

Comparison of test results with theoretical cugy~t- A comparison
of the observed and calculated shear flow and normal flange stresses
for,both loading conditions c% be seen in figures 11 to 14. The
stre&ses were calculated as shown in the appendix %y means of the .“
formulas presented in this.paper.

“ Examination of figures 11 &d 12 shows very good agreement
between the observed end oaldhlatbd shear-stiess values, The only
point iq the tip loading oondition (fig. 11) that does not fall
on theoalculated curve within the acc-cy of the Tuckerman @ge
readings is a point on the spar 7.5 inches from the tip, which is
approximately 5 percent greater than the corresl,ondingcalculated
valu9. This deviation,from the calculated curve is probably oaused .
by the fact that the.section at which this measurement,is taken is,
near the tip of the box.where the 10%I ig being applied. ‘.

IIkaminqti.onof figures,13 and 14 shows Bood a~~eement between
the”expe~imental =d oalctia~pd values of ‘he axial loads in tie
flange due to torsion- For both loading conditions, the observed

.
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values in bays 5 and 6, whi~h include the most critical loads (the
loads at the root of the box), agree within the accuracy of the
Tuckerman gage reading. The observed values in bays-3 and 4 compare
favorably @.th the calculated values for the tip-loading condition.
For the quarter‘point loading condition, however, the olserved
values for the test points in the victiity of bulkhead 3 are
slfghtly greater than the calculated values for the same yoints.
This deviation from the calculated values can be explained by the
uncertainty of the conditions at the yotit of loading. The extent
to which the loading fixture restrains the flanges &com warping
and the fact that the torque applied to the box through the spar
webs needs an appreciable distance to be distributed are only the
obvious reasons for deviations to occur in the vicinity of the
loading bulkheads. Also for these reasons, no attempt was made
to evaluate the stresses in the tip bay for me tip loading condition.

The values of the experimental stresses in figures 13 and 14,
taken within 5 inches of bulkheads 1 and 2, are somewhat greater
than the calculated values. This deviation may be explained in
part by local bending of the flange. The flange acts as a
continuous beam supported by an elastic foundation and loaded at
each bulkhead. The bending moment in this %eem is tie greatest
at the buUsheads where the deviatim of the o%served values from the
calculated values are the greatest.

CONCLUDING REMARKS

The agreement that was obtained between the experimental
lending stresses due to torsion in a @pered box %eam and the
ca.lculateavalues indicates that the metiod presented can be used
to obtain the mending-stress distribution in a tapered box beam
under torsion.

For boxes with very small taper the flange stresses in the
outboard half of the box we very small. In these boxes a first
approximation of the bending stresses due to torsion can be made
by using $he properties of the tapered box at tie root, by
considering the box nontapered, and then using the method of

.
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.

i

.’ ,

. .

ma~sis. descr?vqd by ?aul @hn in.his ,paperon bending stresses
due tp. toys$pn .,.{~CA ARR,,WC, 2942). For mere ‘accuratecalculations
.ot.thebe~ld:lng,stresses due~’totoriion in a tapered tox, however, ,the
metho~ presented he&in shouldbe.used.
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.:, . ... , API’ENDIX “
:’.,’,.“.”.... .. ..’”, ,.,..

SOLUTION OF STRESS DISTR12XJTIONm @2EF@l BOX BEA&i

In order to give an illustration of the method, a complete
solution of the shear and no- stress dig tiibution in the
tapered box usOd as a test specimen is given.

, I

.,.
1

.. .
.,

. . .

,.

The actual over-all dimensi~ of the specimen are given in
tQurQ 7.” The dimensions at the root and tip cross sections exe ‘ i

given in $igme 6, together with the dimensions for the”equivalent
structure. The :<fective flange area is obtained.from the !
equation

...

(Al} 1

where ~ ie the area of a flange angle a& AS is the area 1
I

of a Coker stringer. The effective flange ereas are assumed to 1
%0 concentra.teilat the points of intersection of the center lines

1

of the cover sheets and spar webs. Ail properties of the equivalent
..bo~~.t@y@r,linesrlyfrm tip to root. The %OX is divided into
six bays. The geometrical ~opcrties for the inboard =a outboard 1

end of each bay are lisfed”in table 2. -.
I

“.

The values of E end G used in these calculations are, ‘
respectively, 10,600 ksi and .4jO00 ksi. For the first loading
condition, a torque of 100,000 ‘inch~ounds is applied to tie tip
of the lox and for the second loading condition a torque of 1

100.,000inch-pounds is applied to the middle buMhead of the box.
t
1

The warping
of the eq~ttons

.
constants “p, J; and f“,calc@ated by means

(22), (26), “%d (31), .~d the wa~ing due to -

.“

I
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t

torsion wnT, calculated by the use of equation (17)2 are talmlated

in the following table. The tabulated wnT values are for the Ioti

at tip of box.

Bay

1

2

3

4

5

6

. .

Warying constants

fn

1.610 X IQ
-6

I

-6
0.829 x 10 1.564x 10%

I ● 574

1*714 “ I *794

1.785

1“857

1 ● 511

1.585

1.660

.gok 1.739

1.011 “ 1.817

‘T
‘n I

6k3gx 10
-6

5848

5274

4&)3

4410’

ko83

.

For abox witi’six bays, the recurrence fomnula (equation (37))
and the.equations for the boundary conditions (equations (38) md. (39))
give the following six equations. ,

,,

.( )- p~+fe xp+J@*=wJ
9?- W1

‘)
T

82X1 - (3?’2+ f3 X2 : J3X3 = W3T
- W2

1
J3XQ - (P3 + ‘4 )X3 + J4X4

= W4T - W3T > (A2)

~4x3 - (P4 + fcj)x4 + J5X5” = W5T - whT

J5X4 - (15 + f~ )X5 + #@6 = ~6T - W5T

j6X5 - 4X6 = W6T J

.

.
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F&om substitution of the values from the
formulas of equation (A2), the following

27

preceding table into the
set of simultaneous equations

is obtained for the f&st- tip loading c&dition:

‘1 X2 X3 Xk

-3 ●121 0.574 -591
.574 -3.166 0.684 ‘ -574

.684 -3*307 0 .79k -471
.794 -3.453 0.904 -393

●904 -30602 1o11. “%7
1,o11 -I.857 -4083

The solution of these equations gives

‘1
= 244 X4 = 437

‘2
= 292

‘5
= 965

X3 = 307 X6 = 2724

These values give the flange loads at each bull&ead. In order to
obtain the distribution of the flmge loaw be~een the b~ea~~ .
the formula

obtained

For
the span

and

froma summation of equations (X2) end

calculation of the distribution of the
of the box, tie formulas

(A3 )

(13) is used.

shear flow.along

Qcx (. ‘%’%”1 1 x
n- %-1) ‘*~2 2L

!l~x= - ( )52kL&,~ -Xn.l +...z-
2 2bc
c.

> (A4)

J

.;

.,
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‘,x.obtained from .asumnation of e@ations (J], (~), Ad (13) are used~
:,A tabulation of:the fWnge loads “andshear flti~”can be seen,in
table3. ... . .. .-’ ,f, . .!

“‘For the quarter’~oint loading condition the val~es’for the
mrQing constants p, ~, and f are the same as those for the
tip’“lOadi~ condition● AMo the values for wnT’ are”.we same except

in bay~ ‘1;2, and 3 where wnT is zero. The forrnula~“(A2) can still,..
be used for this loading condition. By substituting the a.ypropriate
values In equation (A2), the following det of stiul.taneousequations
is obtq$ned for ,thequa&er -point loading condition:

xl %’: X3 X4 X5 X6 %+1 ‘-wn

-3.X21 0.574 “ ,1 .“ “ ::’ ‘“ “’ .’ o’--
.574 -3 ●166 o.684

.684 -3.307 0 ● 79k 4&3
● 79k .-3 s453 0.904 -393

*904 -3.602 1.011 -3Q7
.. 1.011 -1.’857 -4083

The solution of these equations gives

‘1 z -63. . . . . . .Xti= -21 ,.: ‘,
,.

.,, .. . .

%2’ -343 X5= ‘9 “ “

.“

= -1528 ,
‘“3 ‘

X6 = 2650
,,.’

....
.

Again, by the use of the equations (A3) and (Ah) the distribution
of the flange loads and shew flows was obtained along the span.
The tabulations of these flsnge l-de and shear flows are ‘shown
in txible4.

,... ,.
:‘, ,.1 ,.. . .’ ::. ... .,

... .. . ..... .’
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~ACA ~ No. 1297 32

TABm 3

CAmm NORWLAm SEElm s~ m

TAPEREDM)XEE4M2KIRIQADAT~

[T = 100,000 in. -lb]

Distance q= *= q~ %
from tip (?b) (;i) (lb/f.no) (psi) (xb/in.) (psi)

(in*)

o 0 0 334-9 47&l 317.1 5040

1 10 167 178 296.7 4240 2b.9 4470

15 244 257 -9”9 265.I “421O

15 244 257 273.8 3910 271.2 4310

2 25 269 277 245.0 3500 242.6 3&0

35 292 2gk 220.4 315Q 218.2 3470

35 292 294 219.7 3140 218.9 34??0

3 45 300 296 198.9 2840 198.1 3150

55 307 296 180.7 25@ la.1 2860

55 307 296 183.9 2630 176.9 28~

4“ 65 375 354 167.9 2400 161.5 2570

75 437 405 154.0 2200 148.o 2350

75 437 40~ 165.3 2360 136.7 2170

5 @ w 647 152.0 2170 125.8 2000

95’ 965 %9 U@.3 2000 U6.1 1~

95 965 “ %9 175.3 2500 81..1 Kgo

6 105 @8 1640 162.3 2320 75.1 llgo

11.5 2724 2336 150.8 2150 69.6 111o

NATIONALADVISORY
COhMITIEEFOR AERONATJT?>CS
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I
lKACA TN NO. 1297 “i

TABIE 4

CALCULMEDMMMAL AND SBEARSTRESSESIIiTAPEREDBOX

BEAMEOR LOADAT QUARTERPfMNTOF SPAN

Distance
w frlmltip -c~

(in.) (;b) (;i) (Ijim) (:i) (l~in.) (psi)

I
o

“1 10

15

15

2 25

35

35

3 45

55

0.

-43

-63

-63

-211

-343

-343

-965

-1528

T=O

o

-46

-66

-66

-217

-345

:345

*1

-1473

=2.3

+!.0

-1.9

-7.8

-6:9

-6.3

-32.5

+g.k

-26.8

-30

-30

-30

2.3

,2.0

1.9

40

w
30

-s!.0

-1oo

-90

-460

-420

-3@

7.8

6.9

6.3

9 ●5

2g.k

26.8

120

llo

100

520

430,

T . 100,000in.‘lb

55 -1528 -1473 221.5 3160 139.3 2210

4 ‘* -740 -@g 202.1 2890 X27.3 2020

75 *1 -19 185.4 2650 116.6 l&l

75 -21 -19 174.0 2450 “ 128.0 2030

5 % 421 “3& 160.0 22go u7.8 1870

95 829 738 147.8 2110 108.6 1730

95 829 738 1~.o 2530 79.4 1.260

6 105 lnk 1549 163.9 23ko 73”5 llm
%

115 2650 2273 152.3 21a 68.1 1083
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. NACA TN No. 1297
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(c) Free-body sketch of flange.
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. NACA TN NO. 1297
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Figure 5—Comparison of stresses in boxes with
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NACA TN NO. 1297 Fig. 11

I

—-— Calculated Bredt shear flow

— Calculated spar shem flow

——— Galmlatecl cover shear ftow ‘-”

n Experim.cntal spar shear flow

o Experimental ccver shear flow
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Figure I l.— Comparison of cxperimcnfa! and calculated sheer flows for tlp Ioockg condlhon.
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T= [00,000 inch-pounds.
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Fig. 12 NACA TN ND. 1297
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,
Fig. 13
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Fig. 14 NACA TN No. 1297
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